DRAGONFLY KINGDOM NTERNATIONAL SERVICE AGENCY

Music Muscle Mindfulness Heartfulness Happiness Health Fitness Fashion Phytonutrients

LIBRARY

Plant Invasions Associated with Change in Root Zone Microbial Community Structure and Diversity. -- Dragonfly Kingdom Library

Posted on November 17, 2020 at 8:30 AM

The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum), another by a shrub (Rhamnus davurica), and the third by a tree (Ailanthus altissima). The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME). Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs) closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that nitrogen cycling bacteria and functions are important factors in plant invasions. Whether the changes in microbial communities are driven by direct plant microbial interactions or a result of plant-driven changes in soil properties remains to be determined.

 

Citation: Rodrigues RR, Pineda RP, Barney JN, Nilsen ET, Barrett JE, Williams MA (2015) Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity. PLoS ONE 10(10): e0141424. doi:10.1371/journal.pone.0141424

 

Editor: Jian Liu, Shandong University, CHINA

 

Received: June 10, 2015; Accepted: October 8, 2015; Published: October 27, 2015

 

Copyright: © 2015 Rodrigues et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

 

Data Availability: All relevant data are within the paper and its Supporting Information files. Data are submitted under Biosamples of SAMN04099948 - SAMN04099953, BioProject PRJNA296487, accession SRP064489 at NCBI (SRA)


Indexed for PLOS One by Dragonfly Kingdom Library


https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141424

Categories: Dragonfly Kingdom International Service Agency: North East Nature Guard, New England True Sustainability Initiative, Springfield Green Team Partnership: Site Updates, Blog And Improvements, Underground Intelligence Media: World News - World History, Nature Yoga Urban Yoga Street Workouts Infographics Series with Marco The Nature Yogi DJ Marco Andre

Post a Comment

Oops!

Oops, you forgot something.

Oops!

The words you entered did not match the given text. Please try again.

You must be a member to comment on this page. Sign In or Register

0 Comments